skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zheng, Jingyang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sikkandar, Mohamed Yacin (Ed.)
    In various biological systems, analyzing how cell behaviors are coordinated over time would enable a deeper understanding of tissue-scale response to physiologic or superphysiologic stimuli. Such data is necessary for establishing both normal tissue function and the sequence of events after injury that lead to chronic disease. However, collecting and analyzing these large datasets presents a challenge—such systems are time-consuming to process, and the overwhelming scale of data makes it difficult to parse overall behaviors. This problem calls for an analysis technique that can quickly provide an overview of the groups present in the entire system and also produce meaningful categorization of cell behaviors. Here, we demonstrate the application of an unsupervised method—the Variational Autoencoder (VAE)—to learn the features of cells in cartilage tissue after impact-induced injury and identify meaningful clusters of chondrocyte behavior. This technique quickly generated new insights into the spatial distribution of specific cell behavior phenotypes and connected specific peracute calcium signaling timeseries with long term cellular outcomes, demonstrating the value of the VAE technique. 
    more » « less
  2. Rehfeldt, Florian (Ed.)
    Cellular response to stimulation governs tissue scale processes ranging from growth and development to maintaining tissue health and initiating disease. To determine how cells coordinate their response to such stimuli, it is necessary to simultaneously track and measure the spatiotemporal distribution of their behaviors throughout the tissue. Here, we report on a novel SpatioTemporal Response AnalysisIN Situ(STRAINS) tool that uses fluorescent micrographs, cell tracking, and machine learning to measure such behavioral distributions. STRAINS is broadly applicable to any tissue where fluorescence can be used to indicate changes in cell behavior. For illustration, we use STRAINS to simultaneously analyze the mechanotransduction response of 5000 chondrocytes—over 20 million data points—in cartilage during the 50 ms to 4 hours after the tissue was subjected to local mechanical injury, known to initiate osteoarthritis. We find that chondrocytes exhibit a range of mechanobiological responses indicating activation of distinct biochemical pathways with clear spatial patterns related to the induced local strains during impact. These results illustrate the power of this approach. 
    more » « less